::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:
function SPRP: Strong Probable Prime test.
entry N word, &Unsignes odd number to test
B word :Base to test against
exit Sprp Bit :0  Proven composite; 1  Likely prime; maybe not
local Z byte, &Number of zero bits on the right side of D
D word, &N  1; right justified
R word, &Residual
Nc cell :N in 64 bits
precondition
N // 1 fault N; FAULT: Cannot test 0 or 1 for primality.
N /\ 1 fault Nd#; FAULT: Cannot test even numbers for primality.
.
:...............................................................................
: Find D and Z that satisfy N  1 = D * 2^Z, where D is odd and Z >= 0.
:
D = (N  1) // 1; Always remove the rightmost zero.
DO until D /\ 1: DO until N  1 is right justified,
D //= 1
Z += 1; Count the zero bits.

R = Power.Mod( B, D, N ); B ^ D mod N
IF R = 1 or R = N  1: IF residual is 1 or N  1,
Sprp = 1; N is a SPRP base B (possibly prime).
ELSE IF R: ELSE IF checking if provably composite,
: Otherwise, see if B^(2^R) mod N = N  1, where 0 <= R < Z.
:
Nc = positive( N ); Zero extend N to 64 bits.
DO Z times: DO over each zero bit,
R = cell{ positive( R * R ) % Nc }; R^2 mod N
IF R = N  1: IF prime or a strong psuedo prime,
Sprp = 1; Not known to be composite
UNDO; UNDO
 .
ELSE IF le( N, B ): ELSE IF R = 0 and N is small,
Sprp = 1; Not known to be composite
.
return